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Testing a random phase approximation for bounded turbulent flow
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~Received 29 September 1998!

Tractable implementation of a spectral closure requires that the modal representation of the energy satisfy a
restricted random phase approximation~RRPA!. This condition is exactly satisfied when the statistical system
is homogeneous and the basis functions are Fourier modes. In this case, the ensemble average of the spectral
covariance diagonalizes, i.e.,^c(k1)c(k2)&5d(k11k2)^c(k1)c(k2)&, wherec(k,t) is a Fourier coefficient in
a Galerkin representation of the velocity field. However, for inhomogeneous statistical systems in which the
Fourier system is inappropriate, the RRPA requires validation. We use direct numerical simulations~DNSs! of
the Navier-Stokes and truncated Euler equations to test the degree to which the RRPA is satisfied when applied
to a recent representation due to Turner~LANL Unclassified Report No. LA-UR-96-3257! of a bounded
turbulent rectangular channel flow with free slip, stress free walls. It is shown that acompletetest of the RRPA
for a fully inhomogeneous DNS withN3 grid points actually requiresN311 members in the ensemble. The
‘‘randomness’’ of the phase can be characterized by a probability density function~PDF! of the modulus of the
normalized spectral covariance. Results reveal that for both the Navier-Stokes and Euler systems the PDF does
not change in time as the turbulence decays, and that the PDF for the Euler system is virtually identical to the
one produced from an ensemble of random fields. This result is consistent with the equipartition of energy for
the Euler system, in which the RRPA becomes an exact result rather than an approximation as the number of
realizations approachesN311. Theslight differences observed between the PDF produced from the random
fields and the one from the Navier-Stokes system are thus shown to be entirely a result of the presence of a
finite viscosity. It is also shown that there is great variation between statistics computed over the ensemble and
those for a single realization.@S1063-651X~99!11605-2#

PACS number~s!: 47.27.2i, 02.70.Hm
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I. INTRODUCTION

Historically, application of the fundamental theories
hydrodynamic turbulence generally have assumed that
ensemble averaged statistics of the turbulent flow under c
sideration are homogeneous~translation invariant! @1,2#. The
motivation for this restricted range of application has be
that the assumption of homogeneity tremendously simpli
the mathematical problems attendant to representing the
locity field. Foremost, the assumption of homogeneity p
mits the use of a Fourier representation of the turbulent fl
field, which then leads to further significant simplification
First, the Fourier representation of a homogeneous sig
statistically ‘‘diagonalizes.’’ By statistical diagonalization
we mean that when averaged over an ensemble of rea
tions wherein the ensemble statistics are homogeneou
trivially can be shown that the Fourier coefficients of t
homogeneous signalf̂ (k) satisfy

^ f̂ ~k! f̂ ~q!&5^ f̂ ~k! f̂ ~q!&d~k1q!, ~1!

where^¯& denotes an ensemble average. Second, the Fo
representation transforms the integrodifferential represe
tion of pressure effects into an algebraic expression, t
greatly simplifying future analysis.

Unfortunately, real turbulence is not homogeneous, e
though the pressure effects are still integrodifferential
character. Spectral models based on Fourier representa
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have been proposed for inhomogeneous turbulence@3,4#.
However, these models assume ‘‘approximate homoge
ity,’’ and thus have limits of validity in real flows. In addi
tion, a Fourier representation for strongly inhomogeneo
turbulence is usually not appropriate—the domain is not
mogeneous, and furthermore, may not even be perio
Even so, one still would like a representation in which t
pressure can be treated in a straightforward fashion. H
ever, the functional bases appropriate for a particular g
metric domain may not diagonalize unless theensembleof
realizations of the inhomogeneous field possesses a ‘‘ran
phase’’ property such as that embodied in Eq.~1!. The con-
sequences of using a representation that does not diagon
is that the computational cost for such a representatio
prohibitive.

When proposing a functional basis to represent an in
mogeneous signal, one mightassume a priorithat the repre-
sentation possesses a random phase property such as E~1!.
We will refer to such an assumption as a restricted rand
phase approximation~RRPA! @5#. The approximation is re-
stricted in the sense that we are only applying it to t
second-order moments. The assumptions necessary to
press the higher-order moments will typically be provided
a turbulence theory~e.g., quasinormal assumption@6,7#! and
a more general random phase approximation is not ne
sary. If the RRPA is violated, than one might still propose
diagonalization procedure such as the one presented by
ichnan@8,9# or Turner@10#. If not, the computational cost o
a nondiagonalized representation would render it comp
tionally intractable.
5511 ©1999 The American Physical Society
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The RRPA is an assumption regarding a particular rep
sentation of anensembleof realizations. Thus, rigorous tes
ing of the validity of the approximation requires a method
generating a~presumably! finite ensemble that possesses t
restricted random phase property@e.g., Eq.~1!#, and then
time-evolving the individual realizations and testing to wh
degree the restricted random phase property is satisfie
various times during the evolution.

The choice of ensemble averages, as opposed to tem
or spatial averages is motivated by physical concerns, as
as by pragmatic mathematical considerations. Fundam
tally, we wish to produce a theory which will tell us how th
statistics of an ensemble of realizations of a system
evolve from a statistically characterizable ensemble of ini
states. Pragmatically, the construction of ensemble aver
is the most straightforward approach to develop statist
models of inhomogeneous, nonsteady turbulence. In the
cial cases of time-invariant~stationary! or space-invariant
~homogeneous! turbulence, other averagesmaybe appropri-
ate. For stationary or homogeneous turbulence, a tempor
spatial average is often substituted for an ensemble aver
The justification for such alternatives to ensemble averag
is attributed to an ‘‘ergodic hypothesis’’ regarding the turb
lence. Such an ergodic hypothesis would require that
statistics of the ensemble of realizations be represented
single particular realization which may, or may not, be
member of the ensemble. The validity of the ergodic hypo
esis for Navier-Stokes turbulence has never been establis
and as a result, attempts to compute statistics from a s
number of direct numerical simulations of homogeneous
bulence~rather than the full ensemble! should be viewed
with caution~see the Appendix!.

The goal of the present paper is to show what is requ
to provide a rigorous determination of the validity of th
RRPA using direct numerical simulations of the Navie
Stokes equations for an inhomogeneous turbulent cha
flow @5# ~described in the next section!, and to determine
whether a particular Galerkin representation of the veloc
field reasonably satisfies some measure of RRPA. The c
putational task of ‘‘proving’’ RRPA is unfortunately beyon
the capability of current computing resources, except in
most trivial circumstances. In fact, it will be demonstrat
that to completely establish RRPA for this particular rep
sentation of the field would require a minimum ofN311
members in the ensemble for a grid withN3 points. We will
also show a congruency of the statistics of the decay
channel flow with a system which can be shown analytica
to satisfy the RRPA@11,12#, namely, the truncated Eule
equations represented in the same functional basis. In a
tion, the implications of RRPA for spectral modeling and f
meaningfully comparing simulation results with those of
spectral model for this bounded turbulent flow will be elu
dated.

The plan of the paper is as follows. In the next sect
~Sec. II!, we first describe the particular flow geometry
well as the functional decomposition of the flow field that w
are studying. In addition, we will introduce the notion of
RRPA in the context of this functional representation. In S
III, we describe how we generate an ‘‘ensemble’’ of initi
conditions which satisfies the RRPA. In Sec. IV we descr
the evolution of these states subjected to the dynamics o
-
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Navier-Stokes equations and also to the dynamics of
truncated Euler equations. We demonstrate that the solut
of the Navier-Stokes equations are consistent with an
semble of states of a system which does satisfy the ran
phase assumption, e.g., the truncated Euler equations. In
V we present our conclusions.

II. VELOCITY DECOMPOSITION FOR A BOUNDED
TURBULENT ‘‘SLAB’’

In the second of a series of three papers, Turner@5# rig-
orously derived a velocity decomposition for an inhomog
neous turbulent flow in terms of a presumably complete
of solenoidal eigenfunctions. The geometry under consid
ation was that of a rectangular channel with free slip, str
free walls aty50 and y5Ly and with periodic boundary
conditions in thex and z directions. The main result from
that work was that the velocity field in physical space cou
be expressed as

u~r ,t !5(
k

c~k,t !D~k,r !, ~2!

where the summation is over all modesk. The spectral co-
efficients in a Galerkin representation of the velocity field a
c(k,t). The solenoidal basis vectorsD~k,r !, have compo-
nents with the following form:

Dx5 f x~k!coskyyei ~kxx1kzz!, ~3!

Dy5 f y~k!sinkyyei ~kxx1kzz!, ~4!

Dz5 f z~k!coskyyei ~kxx1kzz!. ~5!

The presence of Fourier modes in the axisymmetric dir
tions and either sine or cosine modes in the inhomogene
direction will enable a standard pseudospectral method to
used to update the velocity field. More will be said about t
numerical updating procedure in a later section. T
complex-valued vectorf results from the particular geometr
and boundary conditions being considered, and is sole
function of the position vectork, where

f x5
1

&
F2kxkz1 ikky

kAkx
21ky

2 G , ~6!

f y5
1

&
F kkx2 ikykz

kAkx
21ky

2 G , ~7!

f z5
1

&

Akx
21ky

2

k
. ~8!

Here,k refers to the magnitude ofk. To contrast this decom
position with one for a box of fluid with periodic boundar
conditions, we note that for the latter there would be Four
modes in all three directions, andc(k,t)f(k) would be re-
placed byu(k,t). Also, in the degenerate case wherekx50
5ky , the solenoidal eigenvectors take on the followi
simple form:
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Dx52
1

&
ei ~kzz!, ~9!

Dy505Dz . ~10!

For more details about the derivation of this velocity deco
position, the interested reader should refer to Ref.@5#.

Before discussing the RRPA, however, it will be useful
list two important properties ofc(k):

c~2k!5c* ~k!, ~11!

^c~k!&50. ~12!

Note that the time dependence of the spectral coefficie
will no longer be explicitly stated in order to simplify nota
tion. The first property is simply the reality condition, whic
guarantees that the physical space velocity calculated via
~2! is a real-valued vector field. The second property app
to the ensemble as opposed to a particular realization, an
effect, definesc(k) as a zero-mean fluctuating variable.

The RRPA also applies to the ensemble and takes
form of ^c(k)c* (p)&50, unlessp5k. This approximation
might superficially resemble that of homogeneity, but in fa
there is no relation between them. For example, consider
even with the RRPA, they component of the velocity field
must vanish at the channel walls in order to satisfy the
penetration condition at the two boundaries. Thus the fl
cannotbe homogeneous in they direction. Also, the RRPA
is only being applied here to second order moments, whe
homogeneity restricts moments of arbitrary order.

The RRPA enables one to define an ensemble avera
energy spectrum as follows:

Ê~k![^c~k!c* ~k!&54E~k!. ~13!

The hat on the energy spectrum is used to distinguish
quantity from the more traditionalE(k), which has the prop-
erty that a sum over all states yields the total kinetic ene
per mass. A sum over all states ofÊ(k) actually produces
four times the total kinetic energy per mass.

One should realize that the RRPA does not make re
ence to any additional statistical-closure–additional-clos
assumptions would be necessary if one wished to mo
~rather than simulate! the temporal evolution ofÊ(k). This is
precisely the reason why direct numerical simulations~DNS!
can be used to test the RRPA, irrespective of the partic
closure scheme ultimately chosen for the spectral model.
RRPA is critical from a modeling perspective because
extra dimensionality involved in transportingÊ(k,p) versus
Ê(k) is computationally prohibitive. That is, even for a rel
tively simple spectral model like the eddy damped qua
normal Markovian model~EDQNM! @13#, the number of op-
erations per time step jumps fromO(N6) to O(N12) if one
does not employ the RRPA while the storage requireme
jump fromO(N3) to O(N6). This large jump in the numbe
of operations and storage requirements clearly shows the
ference between a diagonal and nondiagonal represent
of the spectral covariance. Since the RRPA will therefore
at the crux of any rigorous computable spectral model
-
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inhomogeneous turbulence, it is imperative that we attem
to check its validity through DNS before constructing mo
els which by necessity, will simply assume its validitya
priori .

III. GENERATING AN INITIAL ENSEMBLE SATISFYING
THE RRPA

For the truncated Euler equations@11#, the RRPA as-
sumption is consistent with what one would obtain f
second-order correlations in an absolute equilibrium
semble. For this system, the statistical steady state is on
which the RRPA becomes an exact result instead of an
proximation. This result will be helpful when assessing t
influence of the Navier-Stokes dynamics on the RRPA, si
the Euler system can always provide a lower bound on
error for a given number of realizations. What we first ne
to determine however, isNr , the minimum number of real-
izations necessary to generate an ensemble of initial fi
that can be used to test the RRPA.

To answer this question, assume we have a uniform th
dimensional~3D! lattice with N3 points. For homogeneou
turbulence represented by a Fourier series, onlyN3/2 of these
points are independent for a given realization as a resul
the reality condition@Eq. ~11!#. For the inhomogeneou
problem under consideration, the sine and cosine modes
to 2N points being needed in theky direction while the Fou-
rier modes contributeN points in thekx and kz directions.
Again, only half of these points are independent for a p
ticular realization, and so there are actuallyN3 independent
modes. At each independent modek construct the vector
c( i )(k), where the vector superscript corresponds to the p
ticular realization in the ensemble and ranges between 1
Nr ~the quantity we are trying to determine!. With this an-
satz, it is clear that the RRPA can be restated in terms
inner products of complex vectors and is equivalent to fin
ing an orthogonal basis for these vectors. That is,

^c~k!c* ~p!&[
1

Nr
(
i 51

Nr

c~ i !~k!c* ~ i !~p!50 for kÞp.

~14!

The first part of this equation merely defines the ensem
average, while the second part is the assertion made by
RRPA. The constraints imposed by having to simultaneou
satisfy the RRPA and the reality condition lead to the e
pected result that the dimension of each vector must
greater than or equal to the number of vectors in the h
space. It would of course be mathematically impossible
produce an orthogonal basis if the dimension of each ve
were smaller than this quantity. Equation~12! provides an
additional constraint that must be satisfied for each vec
and thus the final value forNr , is N311.

Although perhaps not too surprising, it is somewhat d
heartening to accept the fact that so many realizations m
be performed to test the RRPA in a nontrivial fashion. Wh
is more disconcerting is that even ifN311 members are
somehow included in the ensemble, there is no guarantee
the Navier-Stokes system that an ensemble of initial con
tions that satisfy the RRPA will satisfy the RRPA as t
ensemble evolves in time. This is precisely what we are
tempting to verify. In fact, even a relatively coarse grid co
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sisting of 323 grid points would require the evolution o
32 769 velocity fields to test the RRPA. It is certainly in o
best interest to determine what penalty is incurred by incl
ing fewer than 32 769 fields in the ensemble.

If we consider the normalized spectral covariance, defi
as

x5
^c~k!c* ~p!&

A^c~k!c* ~k!&^c~p!c* ~p!&
, ~15!

then according to the RRPA, this quantity should be zero
any two nonidentical modes. Asx in general will be a com-
plex number, it can be expressed in polar form asreiu, and
the RRPA asserts that we should have a Dirac delta func
at r 501 for all time. However, when the number of realiz
tions is less thanNr , linear dependencies will preventx
from being zero for some choices ofk andp, and a distribu-
tion of x values will result.

To generate the initial conditions, a Box-Muller algorith
@14# was used to produce Gaussian distributed@N(0,1)# ran-
dom numbers for each of thec( i )(k) fields. The mean at eac
mode,^c(k)& was then computed and subtracted off, so t
the the new values ofc( i )(k) satisfied Eq.~12!. In perform-
ing the Gram-Schmidt orthogonalization procedure, it will
useful to identify both the real and imaginary parts
c( i )(k) andc( i )(p) as follows:

c~ i !~k!5a~ i !1 ib ~ i ! and c~ i !~p!5d~ i !1 ie~ i !. ~16!

To enforce botĥc(k)c* (p)&50 and^c(k)c* (2p)&50 im-
plies that

^ad&5^ae&5^bd&5^be&50. ~17!

The decorrelation of, say,^ad& is accomplished by

d~ i !5d~ i !2
^ad&

^aa&
a~ i !, ~18!

where terms on the right-hand side refer to the current va
of those variables, while the term on the left-hand side re
to the new values ford( i ).

The Gram-Schmidt~GS! algorithm can now be summa
rized by the following steps. First, map the 3D wave vect
to a 1D scalar so that the GS algorithm only need be app
to 1D lists. This will greatly facilitate decorrelating all th
desired modes and also ensure no decorrelated modes w
accidentally recorrelated. Without loss of generality, assu
each list containsN elements~e.g., we wish to generateN
orthogonal vectors!. Next, assume the first member of thei th
list is c( i )(k) and then use Eq.~18! ~whered( i ) is replaced by
b( i )) to enforce^ab&50. This is necessary to ensure th
^c(k)c* (2k)&50. Then go to the second, third, ...,Nth
members of the list and decorrelate the real and imagin
parts of each member from botha( i ) andb( i ) using Eq.~18!.
After proceeding through the entire list, adjust the values
b( i ) by the following scaling factor:

b~ i !5b~ i !A^aa&

^bb&
, ~19!
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so that^bb&5^aa&. Again, this condition is necessary fo
^c(k)c* (2k)&50. Now proceed to the second member
the list and start the procedure again. If there areN vectors in
the list, then it will requireN passes~with each pass contain
ing one fewer member than the previous! to generate the
orthogonal basis.

The fields are then normalized so that the ensemble a
aged autocorrelation at each mode is unity@i.e.,
^c(k)c* (k)&51#. The spherically ensemble averaged ene
spectrum of random numbersÊrand(k) was then computed
and the scalar coefficients were modified for the final time

cnew
~ i ! ~k!5cold

~ i ! ~k!A Ê~k!

Êrand~k!
, ~20!

where Ê(k) is the spectrum with the desired scaling. O
other important point concerning the initialization procedu
is that Eq.~12! is not sufficient to guarantee that a mean flo
will not develop over time. As shown in Ref.@5#, the addi-
tional constraint ofÊ(k)5Ê(k2) must also be satisfied a
t50, where ifk[(kx ,ky ,kz), thenk2[(kx ,2ky ,kz).

IV. NUMERICAL APPROACH

To time-evolve either the Navier-Stokes or truncated E
ler equations, the velocity field in thek space must first be
expressed in terms of the spectral coefficients and the s
noidal basis vectors. From Eq.~2!, one can use the orthogo
nality of the basis vectors to derive the following express
for u~k!:

ua~k!5 f a~k!c~k!1 f a~k2!c~k2! for a5x or z,

uy~k!5 f y~k!c~k!2 f y~k2!c~k2!. ~21!

Thus, it is seen that the velocity at a particular mode depe
not only on quantities evaluated at that mode, but also
quantities evaluated at the reflected mode across theky
plane. Equation~21! can be simplified slightly by noting tha
Eqs. ~6!–~8! imply f i(k2)5 f i* (k). A complication results
from the fact that forky50, the orthonormality condition on
the solenoidal eigenvectors@which include both the trigono-
metric functions and the geometric vectorf~k!# is slightly
different from the one which just involves the trigonometr
functions. As the DNS will involve only the latter represe
tation, that is,

ua~r ,t !5(
k

ua~k,t !coskyyei ~kxx1kzz! for a5x or z,

~22!

uy~r ,t !5(
k

uy~k,t !sinkyyei ~kxx1kzz!, ~23!

an extra factor of& must be applied to the right-hand side
Eq. ~21! when ky50 to ensure that Parseval’s theorem
satisfied.

We will now consider the evolution of three ensemble
each consisting of 17 members. The first ensemble E1
generated using a Gram-Schmidt procedure to produce a
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tem that initially satisfied the RRPA. Since only 17 realiz
tions were considered, only 32 modes in eachc( i )(k) field
~16 modes and their conjugates! were nonzero att50. Only
3D high-energy containing modes were selected, and
nonlinear advective terms filled in the other modes as
turbulence cascaded to smaller scales and was redistrib
by the pressure field. The initial ensemble averaged ene
spectrum scaled ask4e2k2/2 and the 17 velocity fields were
evolved using the Navier-Stokes equations. The second
semble E2 had an ensemble averaged energy spectrum
scaled ask2 ~the scaling for an absolute equilibrium e
semble without helicity! and the initial spectral coefficient
were not orthogonalized with the GS procedure. This
semble was evolved by the truncated Euler equations. E3
third ensemble, is identical to E1, with the exception that
GS procedure is not applied att50. These initial conditions
are summarized in Table I.

The grid for the three ensembles was fixed at 20330
320, with dealiazing of the nonlinear terms accomplished
phase shifting in thekx andkz directions and a2

3 truncation
in the ky direction. The lack of translation invariance in th
ky direction eliminates the phase shift method as a poss
choice for removing the aliasing error in the inhomogene
direction. Second order Runge-Kutta and Adams-Bashfo
schemes were used to update the four coupled ordinary
ferential equations@continuity and Navier-Stokes~NS!-
Euler# with an adaptive time step employed for the NS ru
and a fixed time step of 131024 for the Euler runs. While
truncation to a sphere is certainly appropriate for isotro
box turbulence, the rectangular geometry in this probl
suggests the use of an ellipsoidal truncation with minor a
dictated by the number of Fourier modes and major axis
the number of sine or cosine modes. Thus, only modes ly
within an ellipsoid whose minor axes equal ten and ma
axis equal twenty were updated. The NS ensembles were
with a kinematic viscosity ofn50.25 until t52.0, at which
time approximately 95% of the initial kinetic energy p
mass had been dissipated. For the Euler runs, a length
can be defined by

L5 lim
n→`

E
0

kmax
knE~k!dk

E
0

kmax
kn11E~k!dk

5
1

kmax
. ~24!

if E(k) scales as a power law ink @hereE(k) scales ask2#,
and a time scale byt5L/u8, whereu8 is the rms velocity.
The present grid size and ellipsoidal truncation dictate t
kmax520, andu8 for the Euler system was fixed atA1/3.

TABLE I. Ensemble characteristics.

Type GS n Dt
No.

realizations
Scaling of

E(k)

Navier-Stokes Yes 0.25 variable 17 k4e2k2/2

Euler No 0 fixed 17 k2

Navier-Stokes No 0.25 variable 17 k4e2k2/2
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This resulted in a time scale of 8.6631022 and the Euler
system was evolved for approximately 11.5 of these cy
times.

V. RESULTS AND DISCUSSION

A. E1 runs

Figure 1 shows probability density functions~PDFs! of uxu
at several different times during the E1 run. Recall that at
50, there is a Dirac delta function atuxu501 as a result of
the orthogonalization procedure. Clearly, the effect of
initial condition is quickly lost and a distribution evolves th
is stationary in time. Note that ‘‘zero vectors’’ are not in
cluded in the sample space of the PDF. That is, there
criterion at each time based on the largest value of the a
correlation ^c(k)c* (k)& among the independent modes.
an autocorrelation at a particular mode is smaller than 127

times this maximum value, then that vector is discarded fr
the sample space. Therefore as time progresses in the de
ing turbulent system, more vectors will be discarded and
PDF will become slightly noisier. It should also be noted th
this maximum autocorrelation value isO(1) at t50.

There are two competing effects occurring to generate
stationary PDF in Fig. 1. One is due to the limited degrees
freedom present as a result of only updating 17 veloc
fields ~instead of the 12 001 fields necessary for the curr
grid!, which mathematically manifests itself through line
dependencies among most of the modes. The other effec
result of the nonlinear dynamics of Navier-Stokes equati
themselves, which could possibly alter the initial delta fun
tion PDF even if enough fields (>Nr) were evolved. To try
and separate out these effects, it will be useful to cons
how random an ensemble can be when there are not en
degrees of freedom for it to be truly random. To this end,
scalar fields of spectral coefficients have been generated
ing the Box-Muller random number algorithm@14# referred
to in the previous section.

Figure 2 shows the PDF ofuxu produced from the en-
semble of random fields with the PDF computed att50.25
from the Navier-Stokes ensemble. Note that the numbe
random vectors generated isidentical to the number of
‘‘nonzero’’ vectors present in the Navier-Stokes ensemb
One can conclude from the figure that the apparent effec

FIG. 1. The time history of the PDFs ofuxu for the E1 ensemble.
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the Navier-Stokes dynamics is to keep the spectral co
cients near their most random position possible given
limited number of realizations in the ensemble. If we pos
late that the PDF of the Navier-Stokes ensemble will c
tinue to closely mimic that of the PDF from the rando
ensemble as the number of realizations approachesNr , then
Fig. 3 strongly suggests that the RRPA is a very reason
assumption. That is, as the number of random fields
creases, the PDF progressively approaches a Dirac d
function at uxu501, which is entirely consistent with the
RRPA. Even if the PDF does not become a true delta fu
tion as the number of realizations increases, once the num
of fields is greater than or equal toNr , the GS procedure ca
always be used to produce an orthogonal basis which wo
then lead exactly to a Dirac delta function PDF atuxu501.

The PDFs shown in Fig. 1 can be parametrized byDk
[uk2pu. In this way, one can determine whether mod
which are closer together exhibit more or less random ph
than those possessing larger separation distances in the
tional space. These results for E1 are displayed in Fig. 4
seven ranges ofDk at t50.25, and combined with thos
from Fig. 1 demonstrate that not only is there no tempo
dependence to these PDFs shortly aftert50, but neither is
there any strong spatial dependence. The ranges inDk are

FIG. 2. PDFs ofuxu for the E1 ensemble att50.25 and for the
ensemble of random fields generated by the Box-Muller algorith

FIG. 3. PDFs ofuxu for 17, 65, 257, 1025, and 4097 fields o
spectral coefficients generated by the Box-Muller algorithm.
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defined as follows~note that the length of the intervals
constant and assumes the value of 3.8!:

1.013.8j <Dkj 11,1.013.8~ j 11! for j 50–5,

1.013.8j <Dkj 11<1.013.8~ j 11! for j 56. ~25!

Similar results are also obtained for later times.
It is not clear from Fig. 1 which pairs of modes are co

tributing to the large values ofuxu, however, Eq.~21! sug-
gests that a correlation might exist between modesk and
k2 . The results of this hypothesis are presented in Fig
which shows the PDF ofuxu at t50.25, 0.75, and 1.25, wher
only cross correlations betweenk and k2 modes are in-
cluded in the sample space. It is readily observed that
PDF at t50.25 is almost the mirror image of the one th
results for that instant in time when all cross correlations
considered. At later times, however, the PDFs become m
uniform. Although it would not be computationally prohib
tive to modify the RRPA to include the ensemble correlati
betweenc(k) and c(k2), it is not really clear at this point
whether a non-vanishing correlation truly exists or is simp
an artifact of the limited number of realizations or the sp

.

FIG. 4. PDFs ofuxu for the E1 ensemble att50.25 parametrized
by separation distance in the projected space.

FIG. 5. PDFs for the E1 ensemble att50.25, 0.75, and 1.25
where only cross correlations between thek and k2 modes are
considered.
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cific initial conditions for the E1 ensemble. This issue will b
explored in more detail by examining similar PDFs for t
E2 and E3 ensembles.

B. E2 runs

The principal motivation for performing the Euler runs
the analytic result that the RRPA becomes exact for the e
librium ensemble if the number of realizations is greater th
or equal toNr . When viscosity is present, the resulting no
Hamiltonian nature of the Navier-Stokes equations preclu
this analytic result. Of course, since only 17 members
included in the present ensemble, we know that the RR
cannot hold and a distribution ofuxu values ~other than a
Dirac delta function atuxu501) is inevitable. These PDF
are displayed in Fig. 6 and are strikingly similar to tho
from E1. Not only are they stationary, but they also seem
possess a nearly identical shape as those from the NS
These PDFs do not become noisier as the ensemble evo
as the total energy in the Euler system is conserved and
sample space remains constant in time.

Just as for the NS system, we can construct a PDF w
the same number of samples as those in Fig. 6 that util
the Box-Muller algorithm to generate the ensemble of sp
tral coefficients. A comparison between this PDF and the

FIG. 6. The time history of the PDFs ofuxu for the E2 ensemble

FIG. 7. PDFs ofuxu for the E2 ensemble att50.25 and for the
ensemble of random fields generated by the Box-Muller algorith
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from the Euler system is shown in Fig. 7. The curves over
perfectly, and thus allows us to interpret the slight diffe
ences observed between the PDFs in Fig. 2 as purely b
the result of a finite viscosity. One can conclude from Fig
that the equipartition of kinetic energy results in spect
coefficients which are in as random a configuration as p
sible given the limited number of degrees of freedom in
ensemble.

Figure 8 shows the PDFs ofuxu for the Euler system att
50.25 parametrized byDk. Here, seven equally space
ranges ofDk are considered, where

1.015.3j <Dkj 11,1.015.3~ j 11! for j 50–5,

1.015.3j <Dkj 11<1.015.3~ j 11! for j 56. ~26!

Again, these distributions do not exhibit any changes as
cover the full spectrum of possible separation distanc
proving that in the equilibrated Euler system, there is
spatial dependence for the PDFs of the spectral coefficie
This is essentially the same result obtained for the E1 r
and the PDFs show similar behavior at later times.

For the NS system, it appeared at early times that th
was a relatively strong correlation between thek and k2

modes~see Fig. 5!. The same PDFs can be calculated for t

.

FIG. 8. PDFs ofuxu for the E2 ensemble att50.25 parametrized
by separation distance in the projected space.

FIG. 9. PDFs for the E2 ensemble att50.25, 0.50, and 0.75
and 1.0, where only cross correlations between thek andk2 modes
are considered.
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Euler system, and these are displayed in Fig. 9. Note tha
lack of smoothness in these PDFs is a natural consequen
the fact that most cross correlations in the ensemble are
between thek andk2 modes, and thus the sample space
these PDFs is much smaller than for the PDFs in Fig.
Figure 9 shows that at both early and late times, there is
evidence to support a correlation between a mode and
reflected mode across theky plane. However, recall that th
E1 ensemble was orthogonalized att50, while the E2 en-
semble was not. Therefore, it is not obvious whether
correlations observed at short times for the E1 run are du
part to the initial conditions or are a result of the presence
a finite viscosity. This is the principal motivation behind th
E3 runs, which are identical in all respects to the E1
semble, but do not employ the GS procedure att50.

C. E3 runs

Figure 10 shows the time history of the PDFs ofuxu for the
E3 ensemble. Clearly, whether the orthogonalization pro
dure is applied att50 does not have any effect on the st
tionary distribution which quickly evolves. The only differ
ence is the time required to relax into this distribution, whi
is slightly longer for the E1 ensemble, as it starts off a

FIG. 10. The time history of the PDFs ofuxu for the E3 en-
semble.

FIG. 11. PDFs ofuxu for the E3 ensemble att50.25 and for the
ensemble of random fields generated by the Box-Muller algorith
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Dirac delta function att50 ~instead of a PDF such as th
random curve in Fig. 2!. Figure 11 along with Fig. 2 confirm
that the minute differences observed between the PDF
duced from the 17 random fields and the one produced f
the NS system are actually a result of a nonzero viscos
and not the initial conditions of the two NS ensembles. F
ure 12 suggests that just as was previously observed for
E1 ensemble, there is only a weak spatial dependence to
ensemble averaged cross correlations of the spectral co
cients. Here the ranges inDk are defined as

1.013.9j <Dkj 11,1.013.9~ j 11! for j 50–5,

1.013.9j <Dkj 11<1.013.9~ j 11! for j 56. ~27!

The major difference between the two NS ensembles
that when the GS procedure is applied, there is a str
tendency for correlations to occur at early times between
k and k2 modes. It is readily seen from Fig. 13, howeve
that the correlation between these two modes is no diffe
from that among any other two modes in the system for
initially nonorthogonalized NS ensemble. This figure su
gests that the strong correlations observed in the E1

.

FIG. 12. PDFs ofuxu at t50.25 parametrized by separation di
tance in the projected space for the E3 ensemble.

FIG. 13. PDFs for the E3 ensemble att50.25, 0.75, and 1.25
where only cross correlations between thek and k2 modes are
considered.
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PRE 59 5519TESTING A RANDOM PHASE APPROXIMATION FOR . . .
semble are probably the result of starting with a distribut
that is so disparate from the stationary distribution wh
ultimately evolves. If it were possible to run the E1 ensem
with a much larger number of members in the ensemble,
unlikely that such strong correlations between thek andk2

modes would be observed.

D. Single-point Reynolds stress

Heretofore, we have considered the RRPA only in
broadest sense. That is, we have intentionally not perform
spatial integrations in thex and z ~periodic! directions. Al-
though the PDFs in Fig. 1 show that most of the cro
correlations between two different modes do not vanish,
can, in effect, eliminate the majority of their nonzero cont
bution by spatially averaging over ally planes and making
use of the orthogonal properties of the Fourier modes.
quantities of interest are the single-point diagonal Reyno
stress components as a function of distance across the c
nel. In particular, we wish to calculate

Raa~y![ K E ua~x!ua~x!dxdzL , ~28!

wherea takes the value ofx, y, or z. From an engineering
perspective, these are the primary quantities of interest~typi-
cally, one would also be interested in pressure-veloc
pressure-strain, and triple velocity correlations!. Note that a
result of orthogonality is to greatly reduce the number
cross correlations. Here we have that

^c~k!c* ~p!&5d~kx2px!d~kz2pz!^c~k!c* ~p!&. ~29!

Thus, testing the RRPA after spatially averaging over
periodic directions is tantamount to checking that for giv
values ofkx and kz , that all theky modes are decorrelate
from each other over the ensemble.

Figures 14–16 show the diagonal Reynolds stress com
nents for the ensemble of 17 runs along with the same c
ponents for a single realization~run 1! at t52 for the E1
ensemble. Also shown for the sake of comparison are
diagonal Reynolds stress components that can be triv

FIG. 14. Thexx component of the Reynolds stress att52.0 for
the E1 ensemble; a comparison of the ensemble average to tha
single realization as well as to an ensemble that obeys the RR
n
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derived from Eq.~2! by assuming the RRPA is valid. Thes
components have the following form:

Raa,RRPA~y!5
1

2 (
k

Paa~k!cos2~kyy!

3^c~k!c* ~k!& for a5x or z,

Raa,RRPA~y!5
1

2 (
k

Paa~k!sin2~kyy!^c~k!c* ~k!&

for a5y, ~30!

wherePi j (k) is the transverse projection operator defined

Pi j ~k!5d i j 2
kikj

k2 . ~31!

Note that the channel actually has a length ofp in the y
direction, but only values up to the midline are shown~the
other halves of the profiles are simply the mirror images
the ones shown in the figures!. Again, even if we make no

f a
A.

FIG. 15. Theyy component of the Reynolds stress att52.0 for
the E1 ensemble; a comparison of the ensemble average to tha
single realization as well as to an ensemble that obeys the RR

FIG. 16. Thezzcomponent of the Reynolds stress att52.0 for
the E1 ensemble; a comparison of the ensemble average to tha
single realization as well as to an ensemble that obeys the RR
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assumption about the RRPA, the spatial averaging proce
leads to a result in which the only possible cross correlati
are those between they components in thek space. Thus, it
should not be too surprising that relatively good agreemen
observed between theRaa(y) andRaa,RRPA(y).

What is rather disturbing is the wide variation observ
between a single realization and the entire ensemble. Cle
it would be very difficult to justify using the statistics ob
tained from a single run with any fidelity. Note that the on
difference between the 17 runs att50 is the random numbe
seed that goes into the Box-Muller algorithm. In a futu
study, we will start with an ensemble having initial cond
tions that satisfy Eq.~29! rather than the more general de
nition of the RRPA. The advantage of this procedure is t
the ensemble will only requireO(N) members instead o
O(N3), and thus a complete set of fields can be evolved.
will also focus on homogeneous turbulence and any dif
ences that result from spatially averaging and assuming
godicity vs computing statistics from an ensemble avera

E. Effect of resolution on the RRPA

Due to the large number of runs that result from evolvi
three ensembles, all results to this point have been for g
that were 20330320. One can question whether the ad
tion of more modes would significantly change the resu
presented thus far. To this end, a series of 17 runs was
formed ~equivalent to the E3 ensemble! at a resolution of
803120380. The initial velocity fields for this ensembl
were identical to those for the E3 ensemble and the hig
modes ink space were set to zero. The kinematic viscos
was then decreased so thatkmaxh (h[Kolmogorov scale!
was the same for both runs. Figure 17 shows the PDF ouxu
at comparable times in the evolution of the two ensemb
~the more resolved ensenble needed to be run approxim
twice as long to reach the same stage of decay as the lo
resolved ensemble!, and it is clear that the PDFs are virtual
indistinguishable from each other. This is entirely consist
with the PDFs generated from the random fields, wher
was observed that the sensitive parameter was the size o
ensemble, and not the number of points in each ensem
Thus, we can conclude that as one goes to more reso
grids, the proportion of off-diagonal products of spectral c

FIG. 17. PDFs ofuxu showing the effect of increasing the res
lution of the E3 ensemble.
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efficients having a particular value ofuxu remains virtually
unchanged. This also suggests that one does not hav
evolve a larger number of velocity fields at a higher reso
tion to get the same percentage error in the statistics that
sees for the lower resolved runs. That is, it is sufficient
evolve identical sized ensembles, since the PDF is essent
independent of the number of grid points.

F. Implications for spectral modeling

The literature is replete with comparisons of single- a
two-point statistics between DNS and spectral models
homogeneous turbulence. But how would one make me
ingful comparisons when the turbulence is inhomogeneo
The results presented thus far indicate that even for
simple geometry and boundary conditions being conside
in this study, a DNS withN3 grid points would require a
minimumof N311 members in the ensemble to have enou
degrees of freedom to satisfy the RRPA~assuming that it is
valid for Navier-Stokes!.

In the near future, even with computer speed and pa
lelization progressing at the current rate, it is highly unlike
that one will be able to include such a large number of re
izations in the ensemble. Therefore, all comparisons betw
DNS data and a spectral model will have two sources
error, one arising from the limited number of realizations a
the other from the particular closure scheme and assumpt
inherent in the model. As was previously mentioned,
spectral models will have to assume that the RRPA is va
in order to make viable the number of computations per ti
step in updating the ensemble-averaged energy spect
The stern consequence is that even if one can construct
orous spectral models for inhomogeneous turbulence~see
Ref. @5# or @15#, for example!, the error due to having such
limited number of realizations for the DNS might overwhel
the error introduced by the model itself and in effect, ma
any comparison meaningless.

VI. CONCLUSIONS

This study has used DNS of both the Navier-Stokes a
truncated Euler equations suitable for a rectangular cha
flow with free slip, stress free walls to test a statistical a
sumption ~the RRPA! involving second-order moments o
the ensemble averaged spectral coefficients. It was dem
strated that simply to test this assumption in its broad
sense with anN3 grid would actually require the inclusion o
N311 members in the ensemble. As a consequence of
cluding fewer realizations, a distribution ofuxu values~the
modulus of the normalized spectral covariance! results,
which was shown to be both stationary in time and virtua
free of spatial dependencies. Three ensembles consistin
17 realizations were evolved in time~two updated from the
Navier-Stokes equations and one from the Euler equat!
with the difference between the two NS ensembles being
an orthogonalization procedure was either employed or
employed att50.

The main result is that the PDF ofuxu for the Euler system
is identical to the PDF ofuxu created from an ensemble o
random fields, while there are slight differences between
PDF from this random ensemble and the one resulting fr
the NS systems. Thus, viscosity is seen to play a role
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keeping the spectral coefficients from their most random
tribution given the limited number of degrees of freedo
present. More work needs to be done to ascertain whethe
agreement between these PDFs improves or worsens as
members are included in the ensemble. It was also sh
that as more random fields are generated, that the PDF ouxu
approaches a Dirac delta function atuxu501, which is con-
sistent with the RRPA. Equation~21! suggested that a corre
lation might exist between a mode and its reflection in theky

direction. The apparent strong correlation at early times
tween these modes from the E1 ensemble was traced to
orthogonalization procedure used to generate the initial
semble. Both the E2 and E3 ensembles did not exhibit s
strong correlations at short times.

It may seem strange that we have tested the RRPA
considering the distribution of the modulus ofx, rather than
utilizing the phase information. But what the RRPA is rea
asserting is that the phases of the products of any two in
pendent spectral coefficients ineach realizationare uncorre-
lated with the phases of the same two modes in other r
izations, so that the ensemble averaged product is identic
zero. Therefore, the modulus ofx is the appropriate quantity
to consider. Although not shown, the time history of t
phasing of the spectral covariance has been computed an
three ensembles exhibit a uniform distribution between 0
2p. We have also discussed the difficulties that arise w
comparing DNS results for inhomogeneous turbulence
those from a spectral model. It is not readily apparent h
one will be able to separate out and quantify the error du
only evolving a limited number of realizations from the err
incurred by the closure and other assumptions neede
form the model.

In addition, we showed that the statistics from the e
semble are markedly different from those of a particular
alization. This strongly suggests the use of ensemble a
ages for the study of inhomogeneous turbulence. Whethe
not this suggestion is warranted for homogeneous turbule
or turbulence which can be considered homogeneous in
axisymmetric directions for this channel flow will be th
subject of a future study.

Finally, one may ask whether the RRPA would rema
valid for a different geometry~i.e., flow in a pipe or flow
over a sphere! with the same stress-free boundary conditio
As the equipartition argument for the energy~in the absence
of kinetic helicity! remains valid, there is no reason why th
RRPA should not hold for these more complicated invis
flows. What would happen with the addition of viscosity
not clear at present. As only slight departures from
RRPA were observed for the rectangular channel flow wit
finite viscosity, one might anticipate that the same res
would occur once one considers the Navier-Stokes equat
in cylindrical or spherical coordinates. Complex inhomog
neous flows such as Kelvin-Helmholtz could also be a
lyzed using this orthogonal decomposition, and DNS wo
provide a means of determining whether the RRPA is ju
fied or whether additional couplings between spectral coe
cients occur which then need to be included in the model
Provided that the number of additional couplings is sm
these off-diagonal contributions could be incorporated int
spectral model without making it computationally prohib
tive.
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APPENDIX

A common strategy to ‘‘augment’’ the statistical samp
size of turbulence simulations is to assume statistical ho
geneity in the coordinate directions of the simulation whi
satisfy periodic boundary conditions. For example, if an ‘‘e
godic hypothesis’’ is invoked for a single numerical simul
tion of a stochastic system which employs a Fourier rep
sentation on a periodic mesh@16#, one might then substitute
the spatial average for the ensemble average based on
presumption that the ensemble is statistically homogene
However, the diagonality of spectra computed from a sin
simulation is a result of the orthogonality of the basis fun
tions, and not a consequence of the statistical homogen
of the field. For simplicity, we shall demonstrate this ‘‘d
agonality’’ with a 1D example. The signal is represented
an N-length Fourier series

f ~x!5 (
k52N/2

N/221

f̂ ~k!e2 ikx, ~A1!

and any displacement ofx can be represented as a change
phase of the Fourier coefficientf̂ (k);

f ~x1Dx!5 (
k52N/2

N/221

f̂ ~k!e2 ik~x1Dx!

5 (
k52N/2

N/221

@ f̂ ~k!e2 ikDx#e2 ikx

5 (
k52N/2

N/221

@ f̂ Dx
~k!#e2 ikx, ~A2!

wheref̂ Dx
(k)5 f̂ 0(k)e2 ikDx is the displaced representation

the Fourier coefficient andf̂ 0(k)5 f̂ (k) is the undisplaced, or
‘‘base’’ representation of the coefficient. Note thatf̂ (k) f̂ (q)
averaged over all~discrete! translations of the meshDx
5ndx is given by

^ f̂ ~k! f̂ ~q!&x5
1

N (
n50

N21

f̂ ndx
~k! f̂ ndx

~q!

5
1

N (
n50

N21

f̂ ~k! f̂ ~q!e1 i ~k1q!ndx

5 f̂ ~k! f̂ ~q!d~k1q!, ~A3!

where^¯&x denotes a spatial average anddx52p/N. Thus,
we see that the spatial average ‘‘diagonalizes’’ as a con
quence of the orthogonality of the basis functions over
domain. This diagonality is unrelated to the statistical diag
nalization which would be associated with a statistically h
mogeneous ensemble of realizations which may, or may
be periodic. That is, the ‘‘diagonality’’ of the spatial averag
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does not imply that such a property is possessed by the
semble. Indeed, it is undoubtedly a trivial proposition to co
struct a representation that is periodic yet possesses s
cross-phase correlations. Likewise, representation of a si
by a periodic basis function does not guarantee homogen
m

,

n-
-
ng
al

ity

~see Ref.@17#!. Thus an individual simulation of a homoge
neous turbulence may bear the same statistical relationsh
a truly homogeneous~random-phase! ensemble that the in
homogeneous simulations described in this paper bear to
full restricted random phase ensemble.
,
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