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Testing a random phase approximation for bounded turbulent flow
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Tractable implementation of a spectral closure requires that the modal representation of the energy satisfy a
restricted random phase approximati®RPA). This condition is exactly satisfied when the statistical system
is homogeneous and the basis functions are Fourier modes. In this case, the ensemble average of the spectral
covariance diagonalizes, i.€c(ki)c(k,))= 8(ky+k,){c(ky)c(k,)), wherec(k,t) is a Fourier coefficient in
a Galerkin representation of the velocity field. However, for inhomogeneous statistical systems in which the
Fourier system is inappropriate, the RRPA requires validation. We use direct numerical simyRhSss of
the Navier-Stokes and truncated Euler equations to test the degree to which the RRPA is satisfied when applied
to a recent representation due to TurieANL Unclassified Report No. LA-UR-96-32570f a bounded
turbulent rectangular channel flow with free slip, stress free walls. It is shown twahpletetest of the RRPA
for a fully inhomogeneous DNS witN® grid points actually requiresli®*+1 members in the ensemble. The
“randomness” of the phase can be characterized by a probability density fufBi® of the modulus of the
normalized spectral covariance. Results reveal that for both the Navier-Stokes and Euler systems the PDF does
not change in time as the turbulence decays, and that the PDF for the Euler system is virtually identical to the
one produced from an ensemble of random fields. This result is consistent with the equipartition of energy for
the Euler system, in which the RRPA becomes an exact result rather than an approximation as the number of
realizations approaché¢®+ 1. Theslight differences observed between the PDF produced from the random
fields and the one from the Navier-Stokes system are thus shown to be entirely a result of the presence of a
finite viscosity. It is also shown that there is great variation between statistics computed over the ensemble and
those for a single realizatiofS1063-651X99)11605-3

PACS numbdps): 47.27—i, 02.70.Hm

I. INTRODUCTION have been proposed for inhomogeneous turbul€di3c4].
However, these models assume ‘“approximate homogene-
Historically, application of the fundamental theories of ity,” and thus have limits of validity in real flows. In addi-
hydrodynamic turbulence generally have assumed that thgon, a Fourier representation for strongly inhomogeneous
ensemble averaged statistics of the turbulent flow under conurbulence is usually not appropriate—the domain is not ho-
sideration are homogeneo(ganslation invariant(1,2]. The  mogeneous, and furthermore, may not even be periodic.
motivation for this restricted range of application has beergyen so, one still would like a representation in which the
that the assumption of homogeneity tremendously simplifiegressure can be treated in a straightforward fashion. How-
the mathematical problems attendant to representing the Veyer, the functional bases appropriate for a particular geo-
locity field. Foremost, the assumption of homogeneity per,atric domain may not diagonalize unless #resembleof
mits the use of a Fourier representation of the turbulent ﬂoneaIizations of the inhomogeneous field possesses a “random
field, which then leads to further significant simplifications@hase,. property such as that embodied in Eq. The con-

FII’S.t, _the FS{“.“ef rep_rese,r']tauon Of. a hom.ogeneo.us Sign equences of using a representation that does not diagonalize
statistically “diagonalizes.” By statistical diagonalization, ; . o
js that the computational cost for such a representation is

we mean that when averaged over an ensemble of realiza- hibiti
tions wherein the ensemble statistics are homogeneous, Rfohioitive. . . . .
When proposing a functional basis to represent an inho-

trivially can be shown that the Fourier coefficients of the s : X
homogeneous sign(k) satisfy mogeneous signal, one mightsume a priorthat the repre-
sentation possesses a random phase property such é8.Eq.
YN YN We will refer to such an assumption as a restricted random
(ftot(@)=(f(kf(a)o(k+a), @ phase approximatiofRRPA) [5]. The approximation is re-
where(- -y denotes an ensemble average. Second, the Fourigficted in the sense that we are only applying it to the
representation transforms the integrodifferential represent&iecond-order moments. The assumptions necessary to ex-
tion of pressure effects into an algebraic expression, thuBress the higher-order moments will typically be provided by
greatly simplifying future analysis. a turbulence theor{e.g., quasinormal assumpti¢s,7]) and
Unfortunately, real turbulence is not homogeneous, eve@ more general random phase approximation is not neces-
though the pressure effects are still integrodifferential insary. If the RRPA is violated, than one might still propose a
character. Spectral models based on Fourier representatiod@gonalization procedure such as the one presented by Kra-
ichnan[8,9] or Turner[10]. If not, the computational cost of
a nondiagonalized representation would render it computa-
*FAX: 505-665-5926. Electronic address: msu@lanl.gov tionally intractable.
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The RRPA is an assumption regarding a particular repreNavier-Stokes equations and also to the dynamics of the
sentation of arensemblef realizations. Thus, rigorous test- truncated Euler equations. We demonstrate that the solutions
ing of the validity of the approximation requires a method ofof the Navier-Stokes equations are consistent with an en-
generating dpresumably finite ensemble that possesses thesemble of states of a system which does satisfy the random
restricted random phase propefy.g., Eq.(1)], and then Pphase assumption, e.g., the truncated Euler equations. In Sec.
time-evolving the individual realizations and testing to whatV We present our conclusions.
degree the restricted random phase property is satisfied at
various times during the evolution. Il. VELOCITY DECOMPOSITION FOR A BOUNDED

The choice of ensemble averages, as opposed to temporal TURBULENT “SLAB”
or spatial averages is motivated by physical concerns, as well
as by pragmatic mathematical considerations. Fundamera)-r

tally, we wish to produce a theory which will tell us how the ously derived a velocity decomposition for an inhomoge-
Y, W P y WhiC . neous turbulent flow in terms of a presumably complete set
statistics of an ensemble of realizations of a system will

evolve from a statistically characterizable ensemble of initialOf solenoidal eigenfunctions. The geometry under consider-
. y ; ation was that of a rectangular channel with free slip, stress
states. Pragmatically, the construction of ensemble averages

. ) .. free walls aty=0 andy=L, and with periodic boundary
is the most straightforward approach to develop Stat'St'Caconditions in thex and z directions. The main result from

models of inhomogeneous, nonsteady turbulence. In the speg- D .
. . I% X ; . . at work was that the velocity field in physical space could
cial cases of time-invariantstationary or space-invariant
be expressed as

(homogeneoysturbulence, other averagesay be appropri-
ate. For stationary or homogeneous turbulence, a temporal or

spatial average is often substituted for an ensemble average. u(r,t)=2>, c(k,H)AK,r), 2
The justification for such alternatives to ensemble averaging k

is attributed to an “ergodic hypothesis” regarding the turbu- o

lence. Such an ergodic hypothesis would require that th&here the summation is over all modesThe spectral co-
statistics of the ensemble of realizations be represented in &ficients in a Galerkin representation of the velocity field are
single particular realization which may, or may not, be ac(k.t). The solenoidal basis vectots(k,r), have compo-
member of the ensemble. The validity of the ergodic hypothnents with the following form:

esis for Navier-Stokes turbulence has never been established,

In the second of a series of three papers, TufB¢rig-

and as a result, attempts to compute statistics from a small Ax=fx(k)coskyy ek, ©)
number of direct numerical simulations of homogeneous tur- ) .
bulence (rather than the full ensembleshould be viewed Ay=fy(K)sink,ye ka2, (4)
with caution(see the Appendix .

The goal of the present paper is to show what is required A= fz(k)COSkyye'("kaZZ). (5)

to provide a rigorous determination of the validity of the

RRPA using direct numerical simulations of the Navier- The presence of Fourier modes in the axisymmetric direc-
Stokes equations for an inhomogeneous turbulent channéPns and either sine or cosine modes in the inhomogeneous
flow [5] (described in the next sectipnand to determine direction will enable a standard pseudospectral method to be
whether a particular Galerkin representation of the velocityused to update the velocity field. More will be said about the
field reasonably satisfies some measure of RRPA. The confiumerical updating procedure in a later section. The
putational task of “proving” RRPA is unfortunately beyond complex-valued vectdtresults from the particular geometry
the capability of current computing resources, except in th@nd boundary conditions being considered, and is solely a
most trivial circumstances. In fact, it will be demonstratedfunction of the position vectok, where

that to completely establish RRPA for this particular repre-

sentation of the field would require amgrninimum Nf+ 1 1| —kyk,+ikk, ®
members in the ensemble for a grid wki points. We will X sl 2o |’

also show a congruency of the statistics of the decaying V2| K Kt Ky

channel flow with a system which can be shown analytically )

to satisfy the RRPA11,12, namely, the truncated Euler f :i kky—ikyk, @
equations represented in the same functional basis. In addi- () kw/k§+ kf, '

tion, the implications of RRPA for spectral modeling and for

meaningfully comparing simulation results with those of a 1 Ve K2

spectral model for this bounded turbulent flow will be eluci- = (8)
dated. v2 k

The plan of the paper is as follows. In the next section
(Sec. I), we first describe the particular flow geometry asHere,k refers to the magnitude &f. To contrast this decom-
well as the functional decomposition of the flow field that we position with one for a box of fluid with periodic boundary
are studying. In addition, we will introduce the notion of a conditions, we note that for the latter there would be Fourier
RRPA in the context of this functional representation. In Secmodes in all three directions, arafk,t)f(k) would be re-
lll, we describe how we generate an “ensemble” of initial placed byu(k,t). Also, in the degenerate case whége=0
conditions which satisfies the RRPA. In Sec. IV we describe=k,, the solenoidal eigenvectors take on the following
the evolution of these states subjected to the dynamics of thr@mple form:
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inhomogeneous turbulence, it is imperative that we attempt

1 .
Ay=——e'kd), (9)  to check its validity through DNS before constructing mod-
V2 els which by necessity, will simply assume its validiy
priori.
Ay=0=A,. (10)

. o . . [ll. GENERATING AN INITIAL ENSEMBLE SATISFYING
For more details about the derivation of this velocity decom- THE RRPA

position, the interested reader should refer to IRef. _
Before discussing the RRPA, however, it will be useful to  For the truncated Euler equatiof$l], the RRPA as-

list two important properties of(k): sumption is consistent with what one would obtain for
second-order correlations in an absolute equilibrium en-
c(—k)=c*(k), (11 semble. For this system, the statistical steady state is one in
which the RRPA becomes an exact result instead of an ap-

(c(k))y=0. (12)  proximation. This result will be helpful when assessing the

influence of the Navier-Stokes dynamics on the RRPA, since

Note that the time dependence of the spectral coefficientthe Euler system can always provide a lower bound on the
will no longer be explicitly stated in order to simplify nota- error for a given number of realizations. What we first need
tion. The first property is simply the reality condition, which to determine however, N, , the minimum number of real-
guarantees that the physical space velocity calculated via Eizations necessary to generate an ensemble of initial fields
(2) is a real-valued vector field. The second property applieshat can be used to test the RRPA.
to the ensemble as opposed to a particular realization, and in To answer this question, assume we have a uniform three-
effect, definex(k) as a zero-mean fluctuating variable. dimensional(3D) lattice with N® points. For homogeneous

The RRPA also applies to the ensemble and takes theirbulence represented by a Fourier series, b2 of these
form of (c(k)c*(p))=0, unlessp=k. This approximation points are independent for a given realization as a result of
might superficially resemble that of homogeneity, but in fact,the reality condition[Eq. (11)]. For the inhomogeneous
there is no relation between them. For example, consider thairoblem under consideration, the sine and cosine modes lead
even with the RRPA, thg component of the velocity field to 2N points being needed in th direction while the Fou-
must vanish at the channel walls in order to satisfy the notier modes contributdN points in thek, andk, directions.
penetration condition at the two boundaries. Thus the flowAgain, only half of these points are independent for a par-
cannotbe homogeneous in thedirection. Also, the RRPA ticular realization, and so there are actually independent
is only being applied here to second order moments, wherearodes. At each independent mokleconstruct the vector

homogeneity restricts moments of arbitrary order. c(k), where the vector superscript corresponds to the par-
The RRPA enables one to define an ensemble averageidular realization in the ensemble and ranges between 1 and
energy spectrum as follows: N, (the guantity we are trying to determjnéwith this an-
R satz, it is clear that the RRPA can be restated in terms of
E(k)={c(k)c*(k))=4E(k). (13)  inner products of complex vectors and is equivalent to find-

ing an orthogonal basis for these vectors. That is,
The hat on the energy spectrum is used to distinguish this

quantity from the more tradition&(k), which has the prop- B Lo . B
erty that a sum over all states yields the total kinetic energy (C(K)C*(P)= N_rZ'l c(k)c*V(p)=0 for k#p.
per mass. A sum over all states Bfk) actually produces (14)

four times the total kinetic energy per mass. i . . .
One should realize that the RRPA does not make referd N€ first part of this equation merely defines the ensemble

ence to any additional statistical-closure—additional-closur@V€rage, while the second part is the assertion made by the
assumptions would be necessary if one wished to moddfRPA. The constraints |mposeq by hav!ng to simultaneously

. . - o satisfy the RRPA and the reality condition lead to the ex-
(rather than simulajehe temporal evolution dE(k). This is

. . . ; . ected result that the dimension of each vector must be
precisely the reason why direct numerical simulatiddilS) P

b d 1o test the RRPA. i " f th seul reater than or equal to the number of vectors in the half-
can be used to test the , Irréspective of the particu gvpace. It would of course be mathematically impossible to

N

(lz\)lcéspu'ge'sch(.etmelquUmately créoslgn for the SF;?CU%I model. ;Lh roduce an orthogonal basis if the dimension of each vector
IS critical from a modeling perspective because ere smaller than this quantity. Equati¢h?) provides an

extra dimensionality involved in transportirig(k,p) versus  additional constraint that must be satisfied for each vector,
E(k) is computationally prohibitive. That is, even for a rela- and thus the final value fd, , is N3+ 1.

tively simple spectral model like the eddy damped quasi- Although perhaps not too surprising, it is somewhat dis-
normal Markovian modelEDQNM) [13], the number of op- heartening to accept the fact that so many realizations must
erations per time step jumps fro®(N®) to O(N'?) if one  be performed to test the RRPA in a nontrivial fashion. What
does not employ the RRPA while the storage requirementis more disconcerting is that even M3+1 members are
jump from O(N3) to O(N®). This large jump in the number somehow included in the ensemble, there is no guarantee for
of operations and storage requirements clearly shows the dithe Navier-Stokes system that an ensemble of initial condi-
ference between a diagonal and nondiagonal representatidions that satisfy the RRPA will satisfy the RRPA as the
of the spectral covariance. Since the RRPA will therefore beensemble evolves in time. This is precisely what we are at-
at the crux of any rigorous computable spectral model fottempting to verify. In fact, even a relatively coarse grid con-
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sisting of 32 grid points would require the evolution of so that(bb)=(aa). Again, this condition is necessary for
32769 velocity fields to test the RRPA. It is certainly in our (c(k)c* (—k))=0. Now proceed to the second member of
best interest to determine what penalty is incurred by includihe list and start the procedure again. If thereMrectors in

ing fewer than 32 769 fields in the ensemble. the list, then it will requireN passegwith each pass contain-
If we consider the normalized spectral covariance, defineéhg one fewer member than the previpus generate the
as orthogonal basis.
The fields are then normalized so that the ensemble aver-
(c(k)c*(p)) aged autocorrelation at each mode is unify.e.,

(19

X= Jekc (K e(p)e (o) ' (c(k)c* (k))=1]. The spherically ensemble averaged energy
spectrum of random numbeks, (k) was then computed,

then according to the RRPA, this quantity should be zero fofnd the scalar coefficients were modified for the final time by
any two nonidentical modes. Agin general will be a com-

plex number, it can be expressed in polar fornred, and 0 0 E(k)
the RRPA asserts that we should have a Dirac delta function CrewlK) = Coia(K) \/ = , (20)
atr=0" for all time. However, when the number of realiza- Erand K)

tions is less tharN,, linear dependencies will prevent .

from being zero for some choices lofandp, and a distribu- Where E(k) is the spectrum with the desired scaling. One

tion of y values will result. other important point concerning the initialization procedure
To generate the initial conditions, a Box-Muller algorithm is that Eq.(12) is notsufficient to guarantee that a mean flow

[14] was used to produce Gaussian distribijts¢0,1)] ran-  Will not develop over time. As shown in Reff5], the addi-

dom numbers for each of thed" (k) fields. The mean at each tional constraint ofE(k)=E(k_) must also be satisfied at

mode,(c(k)) was then computed and subtracted off, so that=0, where ifk=(k,,k, k), thenk_=(k,,—ky ,k,).

the the new values af()(k) satisfied Eq(12). In perform-

ing the Gram-Schmidt orthogonalization procedure, it will be IV. NUMERICAL APPROACH
useful to identify both the real and imaginary parts of , , )
c(k) andc(p) as follows: To time-evolve either the Navier-Stokes or truncated Eu-

ler equations, the velocity field in the space must first be
cO(k)=aV+ib® and c(p)=dV+iel. (16) expressed_in terms of the spectral coefficients and the sole-
noidal basis vectors. From E), one can use the orthogo-
To enforce bothc(k)c* =0 and(c(K)c* (—=p)}=0 im- nality of the basis vectors to derive the following expression
plies that et e) etke™(=p)) for u(k):

(ady=(ae)=(bd)=(be)=0. (17) u,(k)=f (k)yc(k)+f (k_)c(k_) for a=x or z,

The decorrelation of, sayad) is accomplished by uy(k)=Tfy(k)c(k) =fy(k_)etk-). (2D)

d Thus, it is seen that the velocity at a particular mode depends

dih =g — @am, (18)  hot only on quantities evaluated at that mode, but also on
(aa) quantities evaluated at the reflected mode acrosskihe

plane. Equatiori21) can be simplified slightly by noting that
where terms on the right-hand side refer to the current valuggs (6)—(8) imply f(k_)=f*(k). A complication results

of those variables, while the term on the left-hand side refergom the fact that fok, =0, the orthonormality condition on

to the new values f(_)d(i)- _ the solenoidal eigenvectofwhich include both the trigono-
~ The Gram-Schmid{GS) algorithm can now be summa- metric functions and the geometric vectigk)] is slightly
rized by the following steps. First, map the 3D wave vectorsyitferent from the one which just involves the trigonometric

to a 1D scalar so that the GS algorithm only need be applieg)nctions. As the DNS will involve only the latter represen-
to 1D lists. This will greatly facilitate decorrelating all the tation, that is,

desired modes and also ensure no decorrelated modes will be

accidentally recorrelated. Without loss of generality, assume oxtk

each list containdN elements(e.g., we wish to generatd Ua(r,t):% Ug(k,t)coskyye Xl for a=x or z,
orthogonal vectops Next, assume the first member of ttie (22)
list is c(V(k) and then use Eq18) (whered( is replaced by

b®) to enforce(ab)=0. This is necessary to ensure that _

(c(k)c* (—k))=0. Then go to the second, third, .Nth uy(r,t) =2 uy(k,t)sink,ye ke k), (23
members of the list and decorrelate the real and imaginary .

parts of each member from bo#{) andb(") using Eq.(18).
After proceeding through the entire list, adjust the values o
b® by the following scaling factor:

n extra factor of2 must be applied to the right-hand side of
g. (21) whenk,=0 to ensure that Parseval’s theorem is
satisfied.
We will now consider the evolution of three ensembles,
b = p(i) /@ (19) each consisting of 17 members. The first ensemble E1 was
(bb)’ generated using a Gram-Schmidt procedure to produce a sys-
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TABLE |I. Ensemble characteristics.

35 ————— — — ——
No.. Scaling of N: P w25 L
Type GS v At realizations ~ E(K) : / \ —— =75 | ]
A AN S Y R N R R t=1.25 ]
Navier-Stokes Yes 0.25 variable 17 Kre— K32 l: ,I ' \ ---- =2 E
Euler No O fixed 17 k? - 2 [ ’
Navier-Stokes No 0.25 variable 17 Kie K42 s : / \
1.5
. N
Ay \
tem that initially satisfied the RRPA. Since only 17 realiza- / \
tions were considered, only 32 modes in eath(k) field 05 j \
(16 modes and their conjugajesere nonzero at=0. Only ol s e
3D high-energy containing modes were selected, and the 0 02 04 0.6 08 1
nonlinear advective terms filled in the other modes as the il

turbulence cascaded to smaller scales and was redistributed

by the pressure field. The initial ensemble averaged energy
2

spectrum scaled de'e %72 and the 17 velocity fields were _ . . s

evolved using the Navier-Stokes equations. The second erd S resulted in Ia t(ljmfe scale of 8.861|O 1laé1d fthﬁ Euler |

semble E2 had an ensemble averaged energy spectrum yystem was evolved for approximately 11.5 of these cycle

FIG. 1. The time history of the PDFs bf| for the E1 ensemble.

scaled ask? (the scaling for an absolute equilibrium en- times.

semble without helicity and the initial spectral coefficients

were not orthogonalized with the GS procedure. This en- V. RESULTS AND DISCUSSION

semble was evolved by the truncated Euler equations. E3, the

third ensemble, is identical to E1, with the exception that the A. E1 runs

GS procedure is not applied &t 0. These initial conditions Figure 1 shows probability density functiofRDFs of |x|

are summarized in Table . at several different times during the E1 run. Recall that at
The grid for the three ensembles was fixed ax30 =0, there is a Dirac delta function p¢|=0" as a result of

X 20, with dealiazing of the nonlinear terms accomplished bythe orthogonalization procedure. Clearly, the effect of the
phase shifting in thé, andk, directions and & truncation initial condition is quickly lost and a distribution evolves that
in the k, direction. The lack of translation invariance in the is stationary in time. Note that “zero vectors” are not in-
k, direction eliminates the phase shift method as a possibleluded in the sample space of the PDF. That is, there is a
choice for removing the aliasing error in the inhomogeneougriterion at each time based on the largest value of the auto-
direction. Second order Runge-Kutta and Adams-Bashfortlzorrelation(c(k)c* (k)) among the independent modes. If
schemes were used to update the four coupled ordinary difin autocorrelation at a particular mode is smaller than’10
ferential equations[continuity and Navier-StokegNS)-  times this maximum value, then that vector is discarded from
Euler] with an adaptive time step employed for the NS runsthe sample space. Therefore as time progresses in the decay-
and a fixed time step of 210 * for the Euler runs. While ing turbulent system, more vectors will be discarded and the
truncation to a sphere is certainly appropriate for isotropicPDF will become slightly noisier. It should also be noted that
box turbulence, the rectangular geometry in this problemhis maximum autocorrelation value @&(1) att=0.
suggests the use of an ellipsoidal truncation with minor axes There are two competing effects occurring to generate the
dictated by the number of Fourier modes and major axis btationary PDF in Fig. 1. One is due to the limited degrees of
the number of sine or cosine modes. Thus, only modes lyinreedom present as a result of only updating 17 velocity
within an ellipsoid whose minor axes equal ten and majoffields (instead of the 12 001 fields necessary for the current
axis equal twenty were updated. The NS ensembles were rujrid), which mathematically manifests itself through linear
with a kinematic viscosity ob=0.25 untilt=2.0, at which  dependencies among most of the modes. The other effect is a
time approximately 95% of the initial kinetic energy per result of the nonlinear dynamics of Navier-Stokes equations
mass had been dissipated. For the Euler runs, a length scateemselves, which could possibly alter the initial delta func-
can be defined by tion PDF even if enough fieldsxN,) were evolved. To try
and separate out these effects, it will be useful to consider
Ko how random an ensemble can be when there are not enough
f k"E(k)dk degrees of freedom for it to be truly random. To this end, 17
L= lim 0 - (24) scalar fields of spectral coefficients have been generated us-
n—e [ n41E 0 dk Kmax ing the Box—MuIIer ran.dom number algorithid4] referred
0 (k) to in the previous section.
Figure 2 shows the PDF df| produced from the en-
semble of random fields with the PDF computeda.25
if E(k) scales as a power law k[hereE(k) scales ak®],  from the Navier-Stokes ensemble. Note that the number of
and a time scale by=L/u’, whereu' is the rms velocity. random vectors generated identical to the number of
The present grid size and ellipsoidal truncation dictate thatnonzero” vectors present in the Navier-Stokes ensemble.
kmax=20, andu’ for the Euler system was fixed afl/3.  One can conclude from the figure that the apparent effect of
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FIG. 2. PDFs ofly| for the E1 ensemble at=0.25 and for the FIG. 4. PDFs ofy] for the E1 ensemble &t=0.25 parametrized

ensemble of random fields generated by the Box-Muller algorithm.by separation distance in the projected space.

the Navier-Stokes dynamics is to keep the Spectra| Coefﬁdeﬁned as fO”OWinOte that the Iength of the intervals is

cients near their most random position possible given th&onstant and assumes the value 0f):3.8

limited number of realizations in the ensemble. If we postu- . : .

late that the PDF of the Navier-Stokes ensemble will con- ~ +-073-8/<Akj.,<1.0+3.8j+1) for j=0-5,

tinue to closely mimic that of the PDF from the random

ensemble as the number of realizations approabheghen 1.0+3.8<Akj;<1.0+3.8j+1) for j=6. (25

Fig. 3 strongly suggests that the RRPA is a very reasonable

assumption. That is, as the number of random fields in-_ ) )

creases, the PDF progressively approaches a Dirac del@imilar results are also obtained for later times.

function at|y|=0", which is entirely consistent with the It is not clear from Fig. 1 which pairs of modes are con-

RRPA. Even if the PDF does not become a true delta functfibuting to the large values di, however, Eq(21) sug-

tion as the number of realizations increases, once the numb@gSts that a correlation might exist between mokleand

of fields is greater than or equal k4 , the GS procedure can k__. The results of this hypothesis are presented in Fig. 5,

always be used to produce an orthogonal basis which woulhich shows the PDF df| att=0.25, 0.75, and 1.25, where

then lead exactly to a Dirac delta function PDA gi=0*.  Only cross correlations betwedn and k_ modes are in-
The PDFs shown in Fig. 1 can be parametrized Ay cluded in the sgmple space. It_|s re_adlly observed that the

=|k—p|. In this way, one can determine whether modesPDF att=0.25_|s alm(_)st _the mirror image of the one that

which are closer together exhibit more or less random phaslggsul_ts for that mstan_t in time when all cross correlations are

than those possessing larger separation distances in the furf@nsidered. At later times, however, the PDFs become more

tional space. These results for E1 are displayed in Fig. 4 fopniform. Although it would not be computationally prohibi-

seven ranges oAk at t=0.25, and combined with those tive to modify the RRPA t_o _mclude the ensemble c_orrelgtlon

from Fig. 1 demonstrate that not only is there no temporaPetweenc(k) andc(k-), it is not really clear at this point

dependence to these PDFs shortly afte, but neither is Whethgr a non—vamshlng correlation truly exists or is simply

there any strong spatial dependence. The rangeskimre 2" artifact of the limited number of realizations or the spe-
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FIG. 5. PDFs for the E1 ensemble ta£0.25, 0.75, and 1.25,

FIG. 3. PDFs ofly| for 17, 65, 257, 1025, and 4097 fields of where only cross correlations between theand k_ modes are
spectral coefficients generated by the Box-Muller algorithm. considered.
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FIG. 6. The time history of the PDFs fjf| for the E2 ensemble. FIG. 8. PDFs ofy| for the E2 ensemble &t=0.25 parametrized
by separation distance in the projected space.

cific initial conditions for the E1 ensemble. This issue will be
explored in more detail by examining similar PDFs for the
E2 and E3 ensembles.

from the Euler system is shown in Fig. 7. The curves overlap
perfectly, and thus allows us to interpret the slight differ-
ences observed between the PDFs in Fig. 2 as purely being
the result of a finite viscosity. One can conclude from Fig. 7
B. E2 runs that the equipartition of kinetic energy results in spectral
The principal motivation for performing the Euler runs is cpefficients Whi(.;h are in as random a configuration as pos-
sible given the limited number of degrees of freedom in the

the analytic result that the RRPA becomes exact for the equi=
ensemble.

librium ensemble if the number of realizations is greater than Figure 8 shows the PDFs of| for the Euler system at

or equal toN, . When viscosity is present, the resulting non- !
Hamiltonian nature of the Navier-Stokes equations precludesTo'25 parametrized bAk. Here, seven equally spaced

this analytic result. Of course, since only 17 members ardanges ok are considered, where

included in the present ensemble, we know that the RRPA 1 o4 5.3/sAkj1<1.0+53j+1) for j=0-5,

cannot hold and a distribution df| values (other than a

Dirac delta function aty|=07%) is inevitable. These PDFs 1.0+5.3j<Ak;,1<1.0+53j+1) for j=6. (26)

are displayed in Fig. 6 and are strikingly similar to those

from E1. Not only are they stationary, but they also seem téAgain, these distributions do not exhibit any changes as we

possess a nearly identical shape as those from the NS rueover the full spectrum of possible separation distances,

These PDFs do not become noisier as the ensemble evolvgsoving that in the equilibrated Euler system, there is no

as the total energy in the Euler system is conserved and ospatial dependence for the PDFs of the spectral coefficients.

sample space remains constant in time. This is essentially the same result obtained for the E1 runs
Just as for the NS system, we can construct a PDF witland the PDFs show similar behavior at later times.

the same number of samples as those in Fig. 6 that utilizes For the NS system, it appeared at early times that there

the Box-Muller algorithm to generate the ensemble of specwas a relatively strong correlation between theand k _

tral coefficients. A comparison between this PDF and the onenodes(see Fig. . The same PDFs can be calculated for the
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FIG. 9. PDFs for the E2 ensemble tat 0.25, 0.50, and 0.75,

FIG. 7. PDFs ofly| for the E2 ensemble dt=0.25 and for the and 1.0, where only cross correlations betweerktaedk - modes
ensemble of random fields generated by the Box-Muller algorithmare considered.
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FIG. 10. The time history of the PDFs for the E3 en-
semble y o FIG. 12. PDFs ofy| att=0.25 parametrized by separation dis-

tance in the projected space for the E3 ensemble.

Euler system, and tr_]ese are displa_yed in Fig. 9. Note that thISi{rac delta function at=0 (instead of a PDF such as the
lack of smoothness in these PDFs is a natural consequence{aoilndorn curve in Fig. 2 Figure 11 along with Fig. 2 confirm

the fact that most cross correlations in the ensemble are ngf.. 1o minute differences observed between the PDFE pro-
bhetween e .andk_hmodeﬁ, anﬁ thL:cS thﬁ sample space fOGrduced from the 17 random fields and the one produced from
}:igﬁfe ZD;‘Z\;\?S rtr;::i atséno?heé;rlir;ngrlgt: tii;Dezs tlhnerIZ?é r1the NS system are actually a result of a nonzero viscosity,
? . ’ 'Bnd not the initial conditions of the two NS ensembles. Fig-
evidence to support a correlation between a mode and Itﬂ‘?re 12 suggests that just as was previously observed for the
reflected mode across the plane. However, recall that the E1 ensemble, there is only a weak spatial dependence to the

E1 ensemble was orthogonalyze_dtaio, Wh_'le the E2 en-  opgemble averaged cross correlations of the spectral coeffi-
semble was not. Therefore, it is not obvious whether th%ients Here the ranges ik are defined as

correlations observed at short times for the E1 run are due in
part to the initial conditions or are a result of the presence of 1.0+ 3.9 <AkKj;1<1.0+3.9j+1) for j=0-5,

a finite viscosity. This is the principal motivation behind the

E3 runs, which are identical in all respects to the E1 en- 1.0+3.9<AKj,;;<1.0+3.9j+1) for j=6. (27
semble, but do not employ the GS proceduré=a0.

The major difference between the two NS ensembles is
that when the GS procedure is applied, there is a strong
tendency for correlations to occur at early times between the

Figure 10 shows the time history of the PDFgffor the  k andk_ modes. It is readily seen from Fig. 13, however,
E3 ensemble. Clearly, whether the orthogonalization procethat the correlation between these two modes is no different
dure is applied at=0 does not have any effect on the sta-from that among any other two modes in the system for the
tionary distribution which quickly evolves. The only differ- initially nonorthogonalized NS ensemble. This figure sug-

ence is the time required to relax into this distribution, whichgests that the strong correlations observed in the E1 en-
is slightly longer for the E1 ensemble, as it starts off as a

C. E3 runs
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FIG. 13. PDFs for the E3 ensembletat0.25, 0.75, and 1.25,
FIG. 11. PDFs ofy/| for the E3 ensemble at=0.25 and for the  where only cross correlations between theand k_ modes are
ensemble of random fields generated by the Box-Muller algorithmconsidered.
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FIG. 14. Thexx component of the Reynolds stresstat2.0 for FIG. 15. Theyy component of the Reynolds stresg at2.0 for

the E1 ensemble; a comparison of the ensemble average to that ofige E1 ensemble; a comparison of the ensemble average to that of a
single realization as well as to an ensemble that obeys the RRPAgjngle realization as well as to an ensemble that obeys the RRPA.

semble are probably the result of starting with a distributionderived from Eq(2) by assuming the RRPA is valid. These
that is so disparate from the stationary distribution whichcomponents have the following form:
ultimately evolves. If it were possible to run the E1 ensemble
with a much larger number of members in the ensemble, it is 1
unlikely that such strong correlations between khandk _ Raa,rrPAY) = E% Pa(k)coS(kyy)
modes would be observed.
x{(c(k)c*(k)) for a=x or z,

D. Single-point Reynolds stress

Heretofore, we have considered the RRPA only in its Rw,RRPA(y)=%2 Pw(k)sinz(kyy)(c(k)c*(k))
broadest sense. That is, we have intentionally not performed K
spatial integrations in th& and z (periodig directions. Al-
though the PDFs in Fig. 1 show that most of the cross- for a=y, (30
correlations between two different modes do not vanish, we . L )
can, in effect, eliminate the majority of their nonzero contri- whereP;; (k) is the transverse projection operator defined as
bution by spatially averaging over all planes and making Kok
use of the orthogonal properties of the Fourier modes. The Pij(k)=8;— — . (32)
quantities of interest are the single-point diagonal Reynolds k

stress components as a function of distance across the chan-
nel. In particular, we wish to calculate Note that the channel actually has a lengthmoin they

direction, but only values up to the midline are shoitime

other halves of the profiles are simply the mirror images of
RaalY)= f Ua(X)Uq(X)dxdZ), (28)  the ones shown in the figunesAgain, even if we make no
where « takes the value oX, y, or z. From an engineering 025
perspective, these are the primary quantities of intétgst- L — (y)' (ensen;ble) B
cally, one would also be interested in pressure-velocity, :\ __.Rz(y) (RRPA) ]
pressure-strain, and triple velocity correlatipnsote that a 02 ¢ N --=+=R_(y) (run1) 7
result of orthogonality is to greatly reduce the number of i ~3 ]
cross correlations. Here we have that 0.15 | >3 \
(C(K)c* (p))= 8(Ke— P Alky=P(C(KICH (D). (29 ¥ ot frmommmaae S
Thus, testing the RRPA after spatially averaging over the 0.05 i

periodic directions is tantamount to checking that for given
values ofk, andk,, that all thek, modes are decorrelated oy ]
from each other over the ensemble. 0 02 04 06 08 1 12 14 16
Figures 14—-16 show the diagonal Reynolds stress compo-
nents for the ensemble of 17 runs along with the same com-
ponents for a single realizatiofmun 1) at t=2 for the E1 FIG. 16. Thezzcomponent of the Reynolds stresstat2.0 for
ensemble. Also shown for the sake of comparison are théhe E1 ensemble; a comparison of the ensemble average to that of a
diagonal Reynolds stress components that can be triviallgingle realization as well as to an ensemble that obeys the RRPA.

y
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efficients having a particular value ¢f| remains virtually

35 ——— —— ] unchanged. This also suggests that one does not have to
. 5 /N\ —:20x30x2(; po ] evolve a larger number of velocity fields at a higher resolu-
; / \ — — -80X120X80 grid | tion to get the same percentage error in the statistics that one
o5 [ ] sees for the lower resolved runs. That is, it is sufficient to
: / \ ] evolve identical sized ensembles, since the PDF is essentially
5 25 / \ ] independent of the number of grid points.
& 15 ]
r / ] F. Implications for spectral modeling
! :/ \ ] The literature is replete with comparisons of single- and
05 ¢ ] two-point statistics between DNS and spectral models for
; \ ] homogeneous turbulence. But how would one make mean-
0 o — o2 — o E— o6 ' o8 — 1 ingful comparisons when the turbulence is inhomogeneous?

The results presented thus far indicate that even for the
simple geometry and boundary conditions being considered
FIG. 17. PDFs ofy| showing the effect of increasing the reso- in this study, a DNS withN® grid points would require a
lution of the E3 ensemble. minimumof N®+ 1 members in the ensemble to have enough

degrees of freedom to satisfy the RRPa#ssuming that it is

assumption about the RRPA, the spatial averaging procedunalid for Navier-Stokes
leads to a result in which the only possible cross correlations In the near future, even with computer speed and paral-
are those between thecomponents in th& space. Thus, it lelization progressing at the current rate, it is highly unlikely
should not be too surprising that relatively good agreement ighat one will be able to include such a large number of real-
observed between tHe,.(y) andR,, rrpAY)- izations in the ensemble. Therefore, all comparisons between

What is rather disturbing is the wide variation observedDNS data and a spectral model will have two sources of
between a single realization and the entire ensemble. Clearlgrror, one arising from the limited number of realizations and
it would be very difficult to justify using the statistics ob- the other from the particular closure scheme and assumptions
tained from a single run with any fidelity. Note that the only inherent in the model. As was previously mentioned, all
difference between the 17 runstat0 is the random number spectral models will have to assume that the RRPA is valid
seed that goes into the Box-Muller algorithm. In a futurein order to make viable the number of computations per time
study, we will start with an ensemble having initial condi- step in updating the ensemble-averaged energy spectrum.
tions that satisfy Eq(29) rather than the more general defi- The stern consequence is that even if one can construct rig-
nition of the RRPA. The advantage of this procedure is thaprous spectral models for inhomogeneous turbulefsee
the ensemble will only requir®©(N) members instead of Ref.[5] or[15], for example, the error due to having such a
O(N?), and thus a complete set of fields can be evolved. Wéimited number of realizations for the DNS might overwhelm
will also focus on homogeneous turbulence and any differthe error introduced by the model itself and in effect, make
ences that result from spatially averaging and assuming e®ny comparison meaningless.
godicity vs computing statistics from an ensemble average.

ll

VI. CONCLUSIONS

E. Effect of resolution on the RRPA This study has used DNS of both the Navier-Stokes and

Due to the large number of runs that result from evolvingtruncated Euler equations suitable for a rectangular channel
three ensembles, all results to this point have been for griddow with free slip, stress free walls to test a statistical as-
that were 2X 30x 20. One can guestion whether the addi-sumption (the RRPA involving second-order moments of
tion of more modes would significantly change the resultshe ensemble averaged spectral coefficients. It was demon-
presented thus far. To this end, a series of 17 runs was pestrated that simply to test this assumption in its broadest
formed (equivalent to the E3 ensemblat a resolution of sense with atN® grid would actually require the inclusion of
80x 120X 80. The initial velocity fields for this ensemble N3+1 members in the ensemble. As a consequence of in-
were identical to those for the E3 ensemble and the highetluding fewer realizations, a distribution ¢f| values(the
modes ink space were set to zero. The kinematic viscositymodulus of the normalized spectral covarianaesults,
was then decreased so that,7 (7=Kolmogorov scalg  which was shown to be both stationary in time and virtually
was the same for both runs. Figure 17 shows the PDk|of free of spatial dependencies. Three ensembles consisting of
at comparable times in the evolution of the two ensembled 7 realizations were evolved in timewo updated from the
(the more resolved ensenble needed to be run approximateNavier-Stokes equations and one from the Euler equgtion
twice as long to reach the same stage of decay as the lowaiith the difference between the two NS ensembles being that
resolved ensembjeand it is clear that the PDFs are virtually an orthogonalization procedure was either employed or not
indistinguishable from each other. This is entirely consistenemployed at=0.
with the PDFs generated from the random fields, where it The main result is that the PDF pfl for the Euler system
was observed that the sensitive parameter was the size of tigidentical to the PDF ofy| created from an ensemble of
ensemble, and not the number of points in each ensembleandom fields, while there are slight differences between the
Thus, we can conclude that as one goes to more resolveeDF from this random ensemble and the one resulting from
grids, the proportion of off-diagonal products of spectral co-the NS systems. Thus, viscosity is seen to play a role in
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members are included in the ensemble. It was also shown
that as more random fields are generated, that the P of
approaches a Dirac delta function|gt=0", which is con-
sistent with the RRPA. Equatiof21) suggested that a corre- A common strategy to “augment” the statistical sample
lation might exist between a mode and its reflection inkhe size of turbulence simulations is to assume statistical homo-
direction. The apparent strong correlation at early times begeneity in the coordinate directions of the simulation which
tween these modes from the E1 ensemble was traced to tis@tisfy periodic boundary conditions. For example, if an “er-
orthogonalization procedure used to generate the initial ergodic hypothesis” is invoked for a single numerical simula-
semble. Both the E2 and E3 ensembles did not exhibit suction of a stochastic system which employs a Fourier repre-
strong correlations at short times. sentation on a periodic me$h6], one might then substitute

It may seem strange that we have tested the RRPA bthe spatial average for the ensemble average based on the
considering the distribution of the modulus gfrather than ~ presumption that the ensemble is statistically homogeneous.
utilizing the phase information. But what the RRPA is really However, the diagonality of spectra computed from a single
asserting is that the phases of the products of any two indesimulation is a result of the orthogonality of the basis func-
pendent spectral coefficients éach realizatiorare uncorre-  tions, and not a consequence of the statistical homogeneity
lated with the phases of the same two modes in other reapf the field. For simplicity, we shall demonstrate this “di-
izations, so that the ensemble averaged product is identicalggonality” with a 1D example. The signal is represented as
zero. Therefore, the modulus gfis the appropriate quantity an N-length Fourier series
to consider. Although not shown, the time history of the NiZ—1
phasing of the spectral covariance has been computed and all f= S ke ke Al
three ensembles exhibit a uniform distribution between 0 and )= k=2 (ke ™, (AL)
2. We have also discussed the difficulties that arise when
comparing DNS results for inhomogeneous turbulence tand any displacement afcan be represented as a change in
those from a spectral model. It is not readily apparent howshase of the Fourier coefficiefi(k);
one will be able to separate out and quantify the error due to

APPENDIX

only evolving a limited number of realizations from the error N2=1 .
incurred by the closure and other assumptions needed to f(x+A)= >, F(k)e kxraw
form the model. k=—Ni2
In addition, we showed that the statistics from the en- N/2-1
semble are markedly different from those of a particular re- = z [f(k)e*ikAx]e*ikx
alization. This strongly suggests the use of ensemble aver- k=-N/2
ages for the study of inhomogeneous turbulence. Whether or N/2—1
not this suggestion is warranted for homogeneous turbulence _ E [F4 (K)]e v, (A2)
or turbulence which can be considered homogeneous in the k=—N/2 X
axisymmetric directions for this channel flow will be the
subject of a future study. Wherefo(k) =fo(k)e **x s the displaced representation of

Finally, one may ask whether the RRPA would remain : .- PN P .
valid for a different geometryi.e., flow in a pipe or flow the Fourier coefficient anth(k) = (k) is the undisplaced, or

over a sphepewith the same stress-free boundary conditions. 2as€” representation of the coefficient. Note thgk)f(q)
As the equipartition argument for the ener@y the absence averaged over alldiscretg translations of the mesfh,
of kinetic helicity) remains valid, there is no reason why the =Néx iS given by

RRPA should not hold for these more complicated inviscid N2
flows. What would happen with the addition of viscosity is IRy _= 2 2
not clear at present. As only slight departures from the (FIT(@)x N z‘o g, (K)Tns,(Q)

RRPA were observed for the rectangular channel flow with a
finite viscosity, one might anticipate that the same result
would occur once one considers the Navier-Stokes equations
in cylindrical or spherical coordinates. Complex inhomoge-
neous flows such as Kelvin-Helmholtz could also be ana- =f(k)F(q)o(k+q), (A3)
lyzed using this orthogonal decomposition, and DNS would

provide a means of determining whether the RRPA is justiwhere(---), denotes a spatial average afig=2x/N. Thus,

fied or whether additional couplings between spectral coeffiwe see that the spatial average “diagonalizes” as a conse-
cients occur which then need to be included in the modelingquence of the orthogonality of the basis functions over the
Provided that the number of additional couplings is small,domain. This diagonality is unrelated to the statistical diago-
these off-diagonal contributions could be incorporated into aralization which would be associated with a statistically ho-
spectral model without making it computationally prohibi- mogeneous ensemble of realizations which may, or may not
tive. be periodic. That is, the “diagonality” of the spatial average

N-1
> Fof(geritrans
n=0
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does not imply that such a property is possessed by the elisee Ref[17]). Thus an individual simulation of a homoge-
semble. Indeed, it is undoubtedly a trivial proposition to con-neous turbulence may bear the same statistical relationship to
struct a representation that is periodic yet possesses stroagtruly homogeneougandom-phaseensemble that the in-
cross-phase correlations. Likewise, representation of a signabmogeneous simulations described in this paper bear to the
by a periodic basis function does not guarantee homogeneityll restricted random phase ensemble.
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